top of page

Blog

Are you a passionate professional in the field of digital pathology? We invite you to contribute to PathPixel blog and share your valuable insights and expertise.  Join PathPixel in advancing the field of digital pathology and promoting collaboration and knowledge exchange among professionals.

Submit your article today at pathpixelnet@gmail.com

We resume our journey and further discuss the various aspects of whole slide scanning such as virtual slide generation, image compression, pyramid representation along with storage and access. We hope you enjoy reading this part of our series and stay tuned for the upcoming parts on applications of digital pathology.


TECHNOLOGY

The process of digitization includes four sequential parts: image acquisition (scanning), storage, editing, and display of images (11). WSI uses slide scanners that consist of four main components: light source, slide stage, objective lenses, and a high-resolution camera for image capture (8,12-14).

Whole Slide Scanning

Whole slide scanners capture images of tissue sections tile by tile or in a line-scanning fashion. The multiple images (tiles or lines) are captured and digitally assembled to generate a digital image of the entire slide (15,16). WSI can be categorized as bright field, fluorescent, and multispectral and some scanners can accommodate more than one modality. Bright field scanning emulates standard bright field microscopy and is the most common and cost-effective approach. Fluorescent scanning is akin to fluorescent microscopy and is used to digitize fluorescently labelled slides (i.e., fluorescent immunohistochemistry [IHC], fluorescent in situ hybridization) (15,16). Multispectral imaging captures spectral information across the spectrum of light and can be applied to both the bright field and fluorescent settings (15-19). Line scanning exclusively uses focus maps; however, these can also be used with tile scanning. More recently, scanning processes have been developed that incorporate continuous automatic refocusing processes, further increasing the quality of scans (15-19). They have also incorporated tissue recognition features that allow for automatic detection of the histology specimen via a low-magnification overview scan (16). Different scanners vary in their scanning modality, slide-loading capacity and scan time with a capacity of holding 400 slides in high-throughput scanners (15,20). Scanning times per slide range mainly from 30 seconds to several minutes (21-23). If the camera sensor has a lower resolution than the objective’s numerical aperture allows for, information is lost. Therefore, quality of the capturing camera within a digital scanner should be taken into consideration (15-20). After digitisation, quality of scans need to be assessed as scanning artefacts can affect downstream results, and can be caused by improper cleaning of slides prior to scanning, poorly focused scans, or compensation lines from improper stitching of lines or tiles (24,25).


Virtual Slides

Whole slide scanning generates digital representations of glass slides that can be navigated in an interactive manner. The slide must be captured at sufficiently high resolution and with adequate color depth.


Image Compression

Many methods to reduce file size using image compression are available in WSI. Many vendors use picture formats like JPEG, JPEG 2000, or LZW compression to reduce file size, often resulting in a reduction of file size by a factor of 7 or more (26). However, information is lost in the conversion that cannot be recovered. Although morphologic assessments appear to be less affected, densitometric assessments are increasingly sensitive to this loss (27). Thus, users are discouraged from applying JPEG compression successively on the same image, as it further degrades image quality. Discarding blank regions of the slide reduces file sizes as well as scan times by identifying regions in the initial macro snapshot that do not need to be scanned (28).


Pyramid Representation

Despite methods of reducing file size, a single whole slide image in practice often exceeds 1 GB in size which can be prohibitive to download and load into memory. This problem can be tackled by noting the intrinsic relationship between image scale and field of view. For large fields of view, resolution is limited by the computer monitor and therefore the image does not need to be loaded at the highest resolution. Conversely, when users examine tissue at high magnification, only a small field of view is visible on the monitor at any given time, and so the image does not need to be loaded in its entirety. Whole slide images are stored at multiple resolutions to accommodate a streamlined method for loading images. This multi-resolution representation is commonly referred to as an image pyramid. In this way, a viewer can retrieve a much smaller low-resolution component of the file when attempting to render large fields of view, therefore requiring less bandwidth to view the image. (23-28).


Storage and Access

The strategy for storing virtual slides is largely dependent on intended use. For applications with very few users and with no need for retention, local storage is often sufficient. However, if retention is important, a complete backup strategy including off-site storage, (RAID) storage, or optical/tape storage may be used. Hybrid solutions that involve local and cloud-based storage and access, or hub-and-spoke models for multisite organizations, can also be effective strategies (27-30).


Viewing and Managing Virtual Slides

WSI offers an opportunity to expand the tools available for users to include digital annotation, rapid navigation/magnification, and computer-assisted viewing and analysis (30). For example, when whole slide images are used for educational purposes, access to a dedicated image viewer enables us to annotate images for quick identification and navigation to regions of interest in the slide (30). Similarly, the use of WSI to support clinical diagnostics is often aided by the ability to view images in association with the patient’s clinical history, or alongside other slides or images that may have been acquired from the same patient (e.g., serial sections, IHC, gross photos, radiology) (31). For users who wish to apply image analysis algorithms to whole slide images, some of the viewers are packaged with algorithms that can detect cells, compute positive staining, perform regional segmentation, or perform nuclear segmentation in Hematoxylin and Eosin (H&E) images (32). Viewers often support the ability to annotate images, save regions of interest, take snapshots of selected regions, and export images to other formats. These can be integrated into department’s workflow in a seamless manner, providing on demand image analysis in conjunction with whole slide viewing (30,32,33).


Image Management Systems

Image management systems are software platforms that offer the ability to organize and access images using image metadata, patient information, or some other characteristic that can associate images into meaningful groups. For example, a common clinical workflow may organize slides in a hierarchy that provides users access to images in a manner not unlike laboratory information systems (LIS). Advanced features often include integrated image viewers and analysis routines, the ability to save and recall slide annotations, integration with information systems, storage of computed data (e.g., Human epidermal growth receptor 2 (HER2/neu score), authentication and user management, and modules that provide reports of results. As a result, image management systems are often a central component of a WSI system (28,30).


Preservation of Color Through the WSI Pipeline

Differences in color can have an influence on the diagnostic performance of pathologists. In a set of experiments examining the effect of a computer display’s age on color, Avanaki et al. (34) found that aging reduced the color saturation and luminosity of the display and produced a shift in the color point of white. Consequently, they found that the average time for pathologists to score digital slides increased from 41 to 50 seconds. Intersession percentage agreement of diagnostic scores for slides shown on a non-aged display was about 20% higher than that of aged slides. These findings indicate that preventing the degradation of color in the digitization and display process is important for optimal results. Additionally, color differences are commonly introduced by inter-display differences, which in turn can cause differences in color perception when the same slide, acquired by the same scanner and visualized in the same viewer application, is viewed on different displays. Absolute color calibration can be achieved with the use of the International Color Consortium (ICC) framework, an open, vendor-neutral, cross platform color management protocol. It begins by characterizing the whole slide scanner with a color calibration slide that contains a number of semi-transparent colored patches with known color attributes, such as that described by Yagi (35). After scanning the calibration slide, the relationship between the original color attributes of the reference patches and the values produced by the scanner is determined. This can then be characterized in the ICC source and destination profile and automatically attached to subsequently scanned slides, providing a complete reference to describe the color transformation introduced by the digitization process (36).

References:

1. Aeffner F, Zarella MD, Buchbinder N, Bui MM, Goodman MR, Hartman DJ, et al. Introduction to digital image analysis in whole-slide imaging: a white paper from the digital pathology association. Journal of pathology informatics. 2019;10.

2. Hamilton PW, Wang Y, McCullough SJ. Virtual microscopy and digital pathology in training and education. Apmis. 2012 Apr;120(4):305-15.

3. Ferreira R, Moon J, Humphries J, Sussman A, Saltz J, Miller R, et al. "The virtual microscope". Romanian Journal of Morphology and Embryology. 1997;45: 449–453.

4. Ho J, Parwani AV, Jukic DM, Yagi Y, Anthony L, Gilbertson JR. Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies. Human pathology. 2006 Mar 1;37(3):322-31.

5. Pantanowitz L. Digital images and the future of digital pathology. Journal of pathology informatics. 2010;1.

6. Pantanowitz L, Sharma A, Carter AB, Kurc T, Sussman A, Saltz J. Twenty years of digital pathology: an overview of the road travelled, what is on the horizon, and the emergence of vendor-neutral archives. Journal of pathology informatics. 2018;9.

7. Saco A, Bombi JA, Garcia A, Ramírez J, Ordi J. Current status of whole-slide imaging in education. Pathobiology. 2016;83(2-3):79-88.

8. Abels E, Pantanowitz L. Current state of the regulatory trajectory for whole slide imaging devices in the USA. Journal of pathology informatics. 2017;8.

9. Wilbur DC. Digital cytology: current state of the art and prospects for the future. Acta cytologica. 2011;55(3):227-38.

10. Cucoranu IC, Parwani AV, Pantanowitz L. Digital whole slide imaging in cytology. Archives of Pathology and Laboratory Medicine. 2014 Mar;138(3):300.

11. Farris AB, Cohen C, Rogers TE, Smith GH. Whole slide imaging for analytical anatomic pathology and telepathology: practical applications today, promises, and perils. Archives of pathology & laboratory medicine. 2017 Apr;141(4):542-50.

12. Gilbertson JR, Ho J, Anthony L, Jukic DM, Yagi Y, Parwani AV. Primary histologic diagnosis using automated whole slide imaging: a validation study. BMC clinical pathology. 2006 Dec;6(1):1-9.

13. Farahani N, Parwani AV, Pantanowitz L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol Lab Med Int. 2015 Jun 11;7(23-33):4321.

14. Pantanowitz L, Sinard JH, Henricks WH, Fatheree LA, Carter AB, Contis L, et al. Validating whole slide imaging for diagnostic purposes in pathology: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Archives of Pathology and Laboratory Medicine. 2013 Dec;137(12):1710-22.

15. Bueno G, Déniz O, Fernández‐Carrobles MD, Vállez N, Salido J. An automated system for whole microscopic image acquisition and analysis. Microscopy research and technique. 2014 Sep;77(9):697-713.

16. Montironi R, Cimadamore A, Massari F, Montironi MA, Lopez-Beltran A, Cheng L, et al. Whole slide imaging of large format histology in prostate pathology: potential for information fusion. Archives of Pathology & Laboratory Medicine. 2017 Nov;141(11):1460-1.

17. Indu M, Rathy R, Binu MP. “Slide less pathology”: Fairy tale or reality? Journal of oral and maxillofacial pathology: JOMFP. 2016 May;20(2):284.

18. Hamilton PW, Bankhead P, Wang Y, Hutchinson R, Kieran D, McArt DG, et al. Digital pathology and image analysis in tissue biomarker research. Methods. 2014 Nov 1;70(1):59-73.

19. Higgins C. Applications and challenges of digital pathology and whole slide imaging.

Biotech Histochem. 2015 Jul;90(5):341-7.

20. Feng Z, Puri S, Moudgil T, Wood W, Hoyt CC, Wang C, et al. Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma. Journal for immunotherapy of cancer. 2015 Dec;3(1):1-1.

21. Montalto MC, McKay RR, Filkins RJ. Autofocus methods of whole slide imaging systems and the introduction of a second-generation independent dual sensor scanning method. Journal of pathology informatics. 2011;2.

22. Boyce BF. Whole slide imaging: uses and limitations for surgical pathology and teaching. Biotechnic&Histochemistry. 2015 Jul 4;90(5):321-30.

23. Al‐Janabi S, Huisman A, Van Diest PJ. Digital pathology: current status and future perspectives. Histopathology. 2012 Jul;61(1):1-9.

24. Laurent C, Guérin M, Frenois FX, Thuries V, Jalabert L, Brousset P, et al. Whole-slide imaging is a robust alternative to traditional fluorescent microscopy for fluorescence in situ hybridization imaging using break-apart DNA probes. Human Pathology. 2013 Aug 1;44(8):1544-55.

25. Bertram CA, Klopfleisch R. The pathologist 2.0: an update on digital pathology in veterinary medicine. Veterinary pathology. 2017 Sep;54(5):756-66.

26. Neil DA, Demetris AJ. Digital pathology services in acute surgical situations. Journal of British Surgery. 2014 Sep;101(10):1185-6.

27. Sellaro TL, Filkins R, Hoffman C, Fine JL, Ho J, Parwani AV, et al. Relationship between magnification and resolution in digital pathology systems. Journal of pathology informatics. 2013;4.

28. Johnson JP, Krupinski EA, Nafziger JS, Yan M, Roehrig H. Visually lossless compression of breast biopsy virtual slides for telepathology. InMedical Imaging 2009: Image Perception, Observer Performance, and Technology Assessment 2009 Mar 12 (Vol. 7263, pp. 206-213). SPIE.

29. Pantanowitz L, Szymas J, Yagi Y, Wilbur D. Whole slide imaging for educational purposes. Journal of pathology informatics. 2012;3.

30. Pantanowitz L, Wiley CA, Demetris A, Lesniak A, Ahmed I, Cable W, et al. Experience with multimodality telepathology at the University of Pittsburgh Medical Center. Journal of pathology informatics. 2012;3.

31. Isaacs M, Lennerz JK, Yates S, Clermont W, Rossi J, Pfeifer JD. Implementation of whole slide imaging in surgical pathology: A value added approach. Journal of Pathology Informatics. 2011;2.

32. Saco A, Diaz A, Hernandez M, Martinez D, Montironi C, Castillo P, et al. Validation of whole-slide imaging in the primary diagnosis of liver biopsies in a university hospital. Digestive and Liver Disease. 2017 Nov 1;49(11):1240-6.

33. Krupinski EA, Johnson JP, Jaw S, Graham AR, Weinstein RS. Compressing pathology whole-slide images using a human and model observer evaluation. Journal of pathology informatics. 2012;3.

34. Avanaki AR, Espig KS, Sawhney S, Pantanowitzc L, Parwani AV, Xthona A, et al. Aging display's effect on interpretation of digital pathology slide. InMedical Imaging 2015: Digital Pathology 2015 Mar 19 (Vol. 9420, p. 942006). International Society for Optics and Photonics.

35. Yagi Y. Color standardization and optimization in whole slide imaging. In: Diagnostic pathology 2011 Dec (Vol. 6, No. 1, pp. 1-12). BioMed Central.

36. Hanna MG, Parwani A, Sirintrapun SJ. Whole slide imaging: technology and applications. Advances in Anatomic Pathology. 2020 Jul 12;27(4):251-9.


Blog Author Blog Editor

Sambit K Mohanty, MD Nupur Sharma, MD


18 views0 comments

Welcome to our multipart blog series on "The Whole Slide Imaging Technology and Its Applications: Current and Emerging Perspectives." In this comprehensive series, we delve into the world of whole slide imaging (WSI) and explore its wide-ranging applications in various fields. From healthcare to research, WSI has revolutionized the way we examine and analyze tissue samples, offering unprecedented opportunities for diagnosis, education, and scientific advancements. Join us as we unravel the intricacies of WSI, examine its current state, and explore the exciting emerging perspectives that promise to shape the future of this remarkable technology. Get ready to embark on a journey through the digitalization of microscopy, where virtual slides become windows into a world of endless possibilities.


INTRODUCTION

Digital pathology (DP) is a subspecialty of Pathology that utilizes Whole Slide Imaging (WSI) wherein glass slides are converted into digital slides and are viewed by pathologists through automated image analysis (1,2). It started in the 1960s with telepathology research and subsequent introduction of virtual microscopy and commercial WSI scanners in the 1990s (3). However, technical requirements (scanner, storage, and network), high cost and slow speed of scanning were major limiting factors for its broad dissemination. Over the last decade, the concept of DP has revolutionized as new, potent, affordable scanners and assisted technological advancement and mass- or cloud-based storage technologies have developed bringing a paradigm shift in the field of Pathology (4). This has shown significant impact in dissemination of educational material, expansion of diagnostic services to underprivileged areas, real-time digital consultation services, virtual tumor board, and intra- and inter-institutional academic and research collaborations (4,5).


WSI aids in the integration of electronic workflows and health records, and generation of diagnostic support based on computational tools like artificial intelligence (AI) (6). Although WSI has tremendous lucrative benefits in pathology, involving diagnostic and academic/research services, the complexities involved in the implementation as well as technical and logistic hindrances remain an impediment to its widespread and global adoption (7). For example, current scanning technology does not satisfactorily accommodate thick smears and three-dimensional cell groups in cytopathology (8-11). With suboptimal tissue sections, scanners are currently not providing good results, when encountering tissue folds, air bubbles, and poor staining (8). Unless significant modifications to the workflow are made centered around DP (e.g. automation, continuous flow processes, and quality of the histology presented to the WSI devices), placing WSI systems in the clinical pathology laboratory has been shown to stress the system in terms of reliability, reproducibility, turn-around time, and throughput (9).


Some important milestones in digital and computational pathology are as follows:

1950 Alan Turing conceived the idea of using computers to mimic intelligent behavior and critical thinking.

1956 John McCarthy coined the term artificial intelligence (AI).

1959 Arthur Samuel coined the term machine learning (ML) as “the ability to learn without being explicitly programmed”.

1965 Computerized image analysis of microscopy images of cells and chromosomes by Judith Prewitt and Mortimer Mendelsohn.

1986 Term deep learning (DL) coined by Rina Dechter.

1988 Convolutional neural network (CNN) invented by Yann LeCun.

1990 Whole slide scanners introduced.

1998 Tripath becomes the first company with an automated PAP smear screening product to receive FDA approval.

2003 Cytyc received FDA approval for their ThinPrep Imaging System.

2013 Development of photoacoustic microscopy imaging technique.

2014 Ian Goodfellow introduced generative adversarial network.

2016 MUSE microscopy technique invented to enable high resolution imaging without tissue consumption.

2017 Philips receives approval for a digital pathology whole-slide scanning solution (IntelliSite).

2018 FDA permits first medical device using AI to detect diabetic retinopathy in adults (IDx DR).

2021 FDA authorizes the first AI-based software to detect prostate cancer (Paige Prostate).


Stay tuned for the next part of our blog series, where we delve into the technology aspect of WSI


References

1. Aeffner F, Zarella MD, Buchbinder N, Bui MM, Goodman MR, Hartman DJ, et al. Introduction to digital image analysis in whole-slide imaging: a white paper from the digital pathology association. Journal of pathology informatics. 2019;10.

2. Hamilton PW, Wang Y, McCullough SJ. Virtual microscopy and digital pathology in training and education. Apmis. 2012 Apr;120(4):305-15.

3. Ferreira R, Moon J, Humphries J, Sussman A, Saltz J, Miller R, et al. "The virtual microscope". Romanian Journal of Morphology and Embryology. 1997;45: 449–453.

4. Ho J, Parwani AV, Jukic DM, Yagi Y, Anthony L, Gilbertson JR. Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies. Human pathology. 2006 Mar 1;37(3):322-31.

5. Pantanowitz L. Digital images and the future of digital pathology. Journal of pathology informatics. 2010;1.

6. Pantanowitz L, Sharma A, Carter AB, Kurc T, Sussman A, Saltz J. Twenty years of digital pathology: an overview of the road travelled, what is on the horizon, and the emergence of vendor-neutral archives. Journal of pathology informatics. 2018;9.

7. Saco A, Bombi JA, Garcia A, Ramírez J, Ordi J. Current status of whole-slide imaging in education. Pathobiology. 2016;83(2-3):79-88.

8. Abels E, Pantanowitz L. Current state of the regulatory trajectory for whole slide imaging devices in the USA. Journal of pathology informatics. 2017;8.

9. Wilbur DC. Digital cytology: current state of the art and prospects for the future. Acta cytologica. 2011;55(3):227-38.

10. Cucoranu IC, Parwani AV, Pantanowitz L. Digital whole slide imaging in cytology. Archives of Pathology and Laboratory Medicine. 2014 Mar;138(3):300.

11. Farris AB, Cohen C, Rogers TE, Smith GH. Whole slide imaging for analytical anatomic pathology and telepathology: practical applications today, promises, and perils. Archives of pathology & laboratory medicine. 2017 Apr;141(4):542-50.










Blog Author

Sambit K Mohanty, MD

180 views0 comments

Digital Pathology is a field focused in generating data from digitized specimen scanned slides, sometimes referred to as whole slide imaging (WSI), a succession from traditional microscopy. In its full potential, it is anticipated the further use and development of digital pathology equipment and infrastructure will allow data/information to be transferred across large distances quickly. As you consider your purchase for a slide scanning system, you may find yourself wondering how to use a slide scanner. This blog will go over some of the basic steps to use a slide scanning system


The slide scanning process consists of the following steps

1. Preparation of glass slides

2. Placing slides in the glass slide racks

3. Unlocking and opening of the scanner door

4. Placing glass slide racks in the rack store

5. Closing the scanner door


Let’s go over the process in detail:


To prepare glass slides for scanning we must use only compatible glass slides that fit the glass slide rack. Other important precautions include the following:

  • Make sure that the cover glass does not protrude over the edge of any portion of the glass slide

  • Make sure label is positioned flat on the glass slide and does not extend over the slide edge

  • Follow your laboratory instructions to prepare the tissue for mounting, staining and applying a coverslip

  • To prevent tissue from being excluded from scanning, place the tissue under the cover glass >5 mm from slide label and >3mm from coverslip edge

  • A minimum of 15% of the slide surface must be left empty (no tissue), as the scanner requires this as a reference in order to correctly detect the tissue

  • Make sure that the tissue area of the glass slide is clean of markers, scratches, dirt on or under the cover glass

In order to efficiently scan slides it is important to focus on image quality and ensure quality control. Your scanner usually comes with a quality control protocol and following that will ensure the seamless functioning of your scanner. For example, no wet or freshly made slides with glue or mounting media should be present outside of the coverslip. The coverslip and label must be placed properly. The slides should be cleaned before each scan .This will help prevent dust buildup and reduce scan time. Simple steps like keeping a notebook close to scanner to document scanner errors may be helpful.


Now let us discuss the factors affecting the image quality obtained in your scanner. The image quality of the obtained image depends on the quality of the tissue preparation. Therefore, you need to make sure that the glass slide is clean and does not contain scratches on the tissue area. Also, ensure that the tissue is not too thick or too thin. Lastly, make sure that the tissue is not folded, over or under-stained.


Another important aspect of scanning is the orientation of your slide labels. Make sure the barcode orientation ls either vertical or horizontal and firmly affixed to the glass slide. Avoid dirt, pen marks, bleaching, staining and scratches on code area. Affix the code label only on the upper side of the glass slide and ensure the label does not run on top of the coverslip. Do not use oversized or undersized labels. Use only one code label on one slide. Do not use folded labels or place a new label on top of another label.


Of note, while operating a scanner, glass slide racks must be prepared outside the slide storage. Adding, replacing, or removing single slides to or from a rack inside the slide storage, can lead to skipping of slides and system errors. Incorrectly positioned glass slides can lead to serious damage and may cause an obstruction inside the slide storage and prevent movement of the slide handler. One must make sure that slides are not sticking out of the slide storage. This may cause the handler to collide with slides. When loading or unloading glass slide racks to or from slide storage watch for sharp edges of slides. Putting back an already scanned slide rack will result in rescanning all glass slides present in the glass slide rack.


Understanding the functioning of a slide scanner is not complete without emphasizing the role of trained personnel. An investment in personnel is important for the efficient use of the slide scanner and for data management. In most cases, the vendor will install the machinery and then train 1-2 personnel on staff for the hardware/software aspects of the slide scanner. These 1-2 personnel are then “primary users” who should commit their efforts into developing standard operating protocols, carrying out operations (i.e. slide loading, slide scanning, and general software set-up) and finally exporting/managing data. There is also the topic of data management, and without dedicated personnel this can cause disarray of what has been scanned in. Institutional personnel (such as those in IT) should also be involved in conversations regarding slide scanner purchases as they may be needed to advise on optimal network connectivity for data input/output from onsite or approved offsite.


We hope that this introduction to the usage of slide scanners will be helpful to all those who are looking to use digital pathology as a tool in pathology. As always, all feedback is welcome! Happy reading!


References:

1. Digital Pathology Association: https://digitalpathologyassociation.org/ College of American Pathologists Digital Pathology Topic Center: https://www.cap.org/member-resources/councilscommittees/digital-pathology-topic-center


2. National Alzheimer’s Coordinating Center (NACC): https://www.alz.washington.edu/BiospecimenTaskForce.html











Blog Author

Nupur Sharma, MD



59 views0 comments
bottom of page